位置:成果数据库 > 期刊 > 期刊详情页
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology
  • ISSN号:2095-784X
  • 期刊名称:《陶瓷学报》
  • 时间:0
  • 分类:TQ225.241[化学工程—有机化工] TV698.19[水利工程—水利水电工程]
  • 作者机构:[1]Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China, [2]Key Laboratory of Unconventional Metallurgy, Ministry of Education,Kunming University of Science and Technology, Kunming 650093, China
  • 相关基金:Project(50734007) supported by the National Natural Science Foundation of China
中文摘要:

在弄干进程的非线性的微波,增长改进背繁殖( BP )神经网络和反应表面方法论( RSM )被用来造独立变量的联合效果的一个预兆的模型(微波力量,代理时间和旋转频率)为微波弄干充满硒的炉渣。操作从 RSM 的二次的形式获得的条件的最佳是:14.97 kW, 89.58 min 的代理时间, 10.94 Hz 的旋转频率,和 136.407 的温度的微波力量

英文摘要:

In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.

同期刊论文项目
期刊论文 69 会议论文 17 专利 19 著作 3
同项目期刊论文
期刊信息
  • 《陶瓷学报》
  • 北大核心期刊(2011版)
  • 主管单位:景德镇陶瓷学院
  • 主办单位:景德镇陶瓷学院
  • 主编:秦锡麟
  • 地址:江西景德镇市陶阳南路27号景德镇陶瓷学院
  • 邮编:333001
  • 邮箱:tcxb_0798@163.com
  • 电话:
  • 国际标准刊号:ISSN:2095-784X
  • 国内统一刊号:ISSN:36-1205/TS
  • 邮发代号:44-83
  • 获奖情况:
  • 中国轻工总会优秀科技期刊二等奖、江西省先进科技期刊,江西高校优秀等级二、三等奖 江西省优秀期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:3865