采用响应曲面法中的中心组合模式对偏钒酸铵煅烧制备V2O5工艺条件进行优化,建立偏钒酸铵煅烧制备V2O5的二次多项式数学模型,探讨主要因素的影响及其交互作用。方差分析结果表明:煅烧温度和煅烧时间对偏钒酸铵的分解率都有显著的影响。采用响应曲面法优化得出的最佳工艺条件为:煅烧温度669.71K,煅烧时间35.9min,物料量4.25g。在最佳工艺条件下,偏钒酸铵的分解率预测值为99.71%,其与实验值99.27%相近,证实回归方程拟合度良好。XRD分析表明,采用响应曲面法所得的煅烧工艺参数是可行的。
Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology.