报道了一种基于同一台光纤飞秒激光器的双路飞秒激光相干合成技术,获得脉宽只有4个光学周期(14 fs)的少周期飞秒脉冲。通过数值模拟证明了基于自频移孤子的相干合成为拓宽光谱、窄化脉冲提供了一个很好的方法,是获得少周期飞秒脉冲的可行方案。实验中,一台掺镱光纤飞秒放大系统输出脉宽为62 fs,中心波长为1040 nm的近变换极限脉冲,该脉冲分束后,一束作为基态孤子,另一束耦合到全固光子带隙光纤中产生自频移孤子,通过调整入射脉冲功率等参数获得了中心波长为1150 nm,脉宽为55 fs的近变换极限自频移孤子。将基态孤子与该自频移孤子相干合成,得到了脉宽仅4个光学周期(14 fs)的激光脉冲。
The synthesis of a nearly four-optical-cycle(14 fs) laser pulse from the coherent combination of dual femtosecond laser pulses with a femtosecond amplifier system is reported. The simulation confirms that the scheme is a viable method to produce few-cycle optical pulses. A Yb^3+-doped femtosecond laser fiber amplifier generates62 fs transform-limited pulses with 1040 nm central wavelength. These pulses are split in two. One is employed as fundamental soliton pulses, the other is coupled into all-solid-state photonic bandgap fiber. The parameters are optimized such as the input power to obtain the 55 fs near transform-limited self-frequency-shifted solitons centered at 1150 nm wavelength. A nearly four-optical-cycle(14 fs) laser pulse is combined via coherent synthesis of the fundamental soliton and the self-frequency-shifted soliton.