对一种基于高增益掺Yb3+大模场面积光子晶体光纤(PCF)的锁模激光器进行了简化线型腔结构的实验和理论研究.实验中直接使用塌陷打磨为0°角的光纤端面作为一端腔镜,利用其端面反馈获得了激光振荡,并进一步利用半导体可饱和吸收镜(SESAM)和光栅对的滤波作用实现了稳定的锁模运转.通过调节滤波程度,使激光器实现了从宽带滤波锁模到窄带滤波锁模的连续可调谐.在宽带滤波锁模的条件下,得到了最大平均输出功率2.2W,单脉冲能量29.3nJ,脉冲宽度367fs的锁模脉冲输出;在窄带滤波锁模的条件下,获得最大平均输出功率4W,单脉冲能量53.3nJ,脉冲宽度1.14ps的锁模脉冲输出.在理论上利用分布傅里叶方法对激光器进行了数值模拟,模拟了锁模脉冲在激光器内的提取演化过程,以及脉冲在腔内不同位置对应的特性变化.
The theoretical and experimental study of an Yb-doped double clad large mode area photonic crystal fiber laser is reported. This fiber laser system uses one facet of the fiber directly as a cavity mirror, which is fine-polished to 0° angle after collapsing. Lasing is obtained with the feedback of this facet, and mode-locking is achieved by using a semiconductor saturable absorber as another cavity mirror and adding a grating-pair as the spectral filter. By adjusting the filtering conditions, continuous tuning from wide filtering condition to narrow filtering condition is achieved. Under the wide filtering condition, the system generates femtosecond pulses, the highest average power of which is 2.2 W, corresponding to 29.3 nJ pulse energy and 367 fs pulse duration; under the narrow filtering condition, it generates picosecond pulses, the highest average power of which is 4 W, corresponding to 53.3 nJ pulse energy and 1.14 ps pulse duration. In numerical simulation, the evolution and cavity-position-related characteristics of pulses are studied by using split-step Fourier method.