设k为一正偶数,T是充分大的正数,s=σ+it,3≤Q〈〈T,q为一正整数,x是模q的特征,f(z)=∞∑n=1 a(n)e^2πinx为Г=SL2(z)的权为k的全纯尖点形式.设Nf(σ0,T,x)表示函数Lf(s,x)=∞∑n=1x(n)a(n)n^-s在带形区域k/2+1/log(Q^2T)≤σ0≤σ≤(k+1)/2,|t|≤T内的零点个数,由Dirichlet多项式理论得出∑q≤Q ∑xmodq^*Nf(σ0,T,x)的一个上界,这里∑xmodq^*表示对q的全体原特征求和。
Suppose k be a positive even integer, T is a sufficiently large positive number. Let ,s =s=σ+it,3≤Q〈〈T.Letq be a positive integer and x a Dirichlet character mod q.f(z)=∞∑n=1 a(n)e^2πinx holomorphic cusp form of weight k with respect toГ=SL2(z).Let Nf(σ0,T,x) denote the total number of zeros of Lf(s,x)=∞∑n=1x(n)a(n)n^-s in the region k/2+1/log(Q^2T)≤σ0≤σ≤(k+1)/2,|t|≤T.An upper bound is given for the sum ∑q≤Q ∑xmodq^*Nf(σ0,T,x),where ∑xmodq^*means a sum running over all primitive charactersmod q.