主要算出SU(n,1)中正规椭圆元g的共轭类在维数公式中的贡献:N(g)=λ^n-(n+1)m/|C(g)|(λ-λ1)(λ-λ2)…(λ-λn)'其中m≥2,Bn表示n维超球,SU(n,1)是Bn的自同构群且在Bn上可迁;不失一般性,上式中g=对角阵(λ1,…,λn,λ)(其中λi≠λ,i=1,2,…,n).
For m ≥ 2, the contribution from the conjugacy class of the regualr elliptic element g ∈ SU(n, 1) to dimension formula is N(g)=λ^n-(n+1)m/|C(g)|(λ-λ1)(λ-λ2)…(λ-λn)' Here Bn denotes n-dimensional ball and SU(n, 1) is its group of automorphisms which act transitively on Bn and without loss of generality g = diag(λ1,…,λn,λ) with λi≠λ,i=1,2,…,n.