Effects of aging parameters on hardness and electrical conductivity of Cu-Cr-Sn-Zn alloy by artificial neural network
- ISSN号:1001-2249
- 期刊名称:《特种铸造及有色合金》
- 时间:0
- 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TQ153.2[化学工程—电化学工业]
- 作者机构:[1]College of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
- 相关基金:Project(2006AA03Z528) supported by the National High-Tech Research and Development Program of China; Project(102102210174) supported by the Science and Technology Research Project of Henan Province, China; Project(2008ZDYY005) supported by Special Fund for Important Forepart Research in Henan University of Science and Technology
关键词:
人工神经网络模型, 锡锌合金, 电导率, 铜铬, 硬度, 时效工艺, 非线性关系, 合金性能, Cu-Cr-Sn-Zn alloy, aging parameter, hardness, electrical conductivity, artificial neural network
中文摘要:
以便预言并且控制 Cu-Cr-Sn-Zn 合金的性质,经由一个人工的神经网络(ANN ) 的老化进程的一个模型印射在老化过程和坚硬和 Cu-Cr-Sn-Zn 合金的电的传导性性质的参数之间的非线性的关系的方法被安装。结果证明 ANN 模型是为性质分析和老化 Cu-Cr-Sn-Zn 合金的预言的一个很有用、精确的工具。在 470510 点年老
英文摘要:
In order to predict and control the properties of Cu-Cr-Sn-Zn alloy, a model of aging processes via an artificial neural network (ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up. The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy. Aged at 470-510 ℃ for 4-1 h, the optimal combinations of hardness 110-117 (HV) and electrical conductivity 40.6-37.7 S/m are available respectively.