采用化学共沉淀法制备了Gd^3+掺杂的Mn—Zn铁氧体微粒,并通过XRD、FTIR、VSM等研究了掺杂量对基体材料结构、磁性能及在外磁场作用下磁热效应的影响.结果表明,适量Gd^3+的掺杂可以有效改善Mn—Zn铁氧体的磁性能和磁热效应,成分为Mn0.4Zn0.6Gd0.06Fe1.94O4的铁氧体粉体的粒径约为20nm,具有最高的饱和磁化强度和矫顽力,50mg的该样品与1mL水形成的悬浮液,在频率为60kHz的外磁场诱导下,升温可达31℃,显示出较高的磁热性能,有望作为肿瘤热疗的内加热材料.
Gd^3+-doped Mn-Zn ferrite nanoparticles were prepared by a chemical co-precipitation method. The effect of Gd^3+ contents on structure, magnetic properties and heat effect under AC magnetic field was also investigated. The results show that Gd^3+ can enhance the magnetic properties and heat effect of Mn-Zn ferrites with the proper doped amount. Among the samples prepared, Mn0.4Zn0.6Gd0.06Fe1.94O4 particles with the size of 20nm possess the maximal magnetization Ms and coercive force He. The temperature rise of the suspension of 50g sample and lmL water can reach up to 31℃ under a 60kHz magnetic field, showing the sufficient heating ability for hyperthermia therapies. The results support the concept that the Gd^3+-doped Mn-Zn ferrite nanoparticles may serve as new thermal seeds for magnetic hyperthermia.