位置:成果数据库 > 期刊 > 期刊详情页
结合遗传算法的局部最小误差孔穴图像分割法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北林业大学,哈尔滨150040
  • 相关基金:国家自然科学基金(No.30972314); 国家林业局“948”创新项目(No.2006-4-c03); 东北林业大学研究生科技创新项目(No.GRAM09)
中文摘要:

针对遗传算法和最小误差分割法各自的优缺点,将最小误差分割法与遗传算法进行改进并且相互结合,提出了一种结合遗传算法的局部最小误差孔穴图像分割法。该方法利用局部图像信息确定最佳阈值范围,并根据模拟退火思想对个体适应度进行自适应的调整,从而避免了早熟现象,提高了运算速度。实验结果表明:该方法不但能够准确地分割出孔穴图像,而且运算速度较快,是一种有效的孔穴图像分割方法。

英文摘要:

According to the advantages and disadvantages of the genetic algorithm and the minimum error thresholding method, a partial minimum error thresholding method of cavity image combined with genetic algorithm is developed by improving and combining genetic algorithm with minimum error thresholding method. This method uses the partial information of the cavity image to confirm the best threshold range, and uses simulated annealing algorithm to adjust the individual fitness degree, thus the premature convergence is avoided and the operation speed is improved. The results show that this method can segment the cavity image fast and accurately, and it is an effective method of cavity image segmentation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887