位置:成果数据库 > 期刊 > 期刊详情页
基于统计信息的聚类边界模式检测算法
  • ISSN号:1000-3428
  • 期刊名称:计算机工程
  • 时间:0
  • 页码:3295-3298
  • 语言:中文
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]郑州大学信息工程学院,郑州450052
  • 相关基金:国家自然科学基金资助项目(60673087);郑州大学青年骨干教师基金资助项目.
  • 相关项目:高维空间海量数据快速聚类算法关键技术的研究
中文摘要:

为有效地检测聚类的边界点,提出基于统计信息的边界模式检测算法。根据数据对象的k距离统计信息设定邻域半径,再利用对象邻域范围内邻居的k距离统计信息寻找边界点。实验结果表明,该算法可以有效地检测出任意形状、不同大小和不同密度聚类的边界点,并可以消除噪声。

英文摘要:

This paper proposes an algorithm named boundary pattern detection based on statistics information to detect boundary points of clusters effectively. BOURN sets neighborhood radius based on the k-dist statistics information of the objects, and searches boundary points based on the k-dist statistics information of neighbors in the neighborhood around it. Experimental results show that BOURN can find boundary points of clusters of arbitrary shapes, different sizes and different density, and can remove noise effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139