位置:成果数据库 > 期刊 > 期刊详情页
一种基于网格核密度的自适应边界点检测算法
  • ISSN号:1000-1220
  • 期刊名称:小型微型计算机系统
  • 时间:0
  • 页码:3295-3298
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]郑州大学信息工程学院,河南郑州450052
  • 相关基金:国家自然科学基金项目(60673087)资助;郑州大学骨干教师基金项目资助
  • 相关项目:高维空间海量数据快速聚类算法关键技术的研究
作者: 余田|邱保志|
中文摘要:

为了快速有效的检测聚类的边界点,提出基于网格核密度的自适应边界点检测算法ADAPT(An Adaptive Grid Kernel-Density-Based BoundaryPoints Detecting Algorithm for Spatial Database with Noise),使用网格核密度更精确地拟合网格在其邻域内的密度,采用自适应选取网格近邻策略更好地反应对象的空间分布特征.实验结果表明:该算法可以在含有任意形状、不同大小和不同密度的数据集上快速有效地检测出聚类的边界点.

英文摘要:

In order to detect the boundary points of clusters effectively ,this paper presents an adaptive grid kernel-density-based boundarypoints detecting algorithm for spatial database with noise,ADAPT,which uses the concept of grid kernel density for the accuracy of grid density and a novel adaptive strategy for neighbor selection based on spatial object distribution. As shown by our experimental results, ADAPT detect boundary points effectively and efficiently on various datasets.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212