位置:成果数据库 > 期刊 > 期刊详情页
基于变异系数的边界点检测算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]郑州大学信息工程学院,郑州450052
  • 相关基金:国家自然科学基金(No.60673087)、河南省教育厅自然科学基金(No.2009A520028)资助项目
中文摘要:

为有效检测聚类的边界点,提出基于变异系数的边界点检测算法.首先计算出数据对象到它的&一距离邻居距离之和的平均值.然后用平均值的倒数作为每个点的密度,通过变异系数刻画数据对象密度分布特征寻找边界点.实验结果表明,该算法可在含有任意形状、不同大小和不同密度的数据集上快速有效检测出聚类的边界点,并可消除噪声.

英文摘要:

In order to detect boundary points of clusters effectively, an algorithm is proposed, namely boundary points detecting algorithm based on coefficient of variation (BAND). BAND computes the average distance between one object and its k-distance neighbors. The density of each object is obtained by the reciprocal of average distance. Then the boundary points are found by using the coefficient of variation to portray the distribution of data objects. The experimental results show BAND effectively detects boundary points on noisy datasets with clusters of arbitrary shapes, sizes and different densities.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169