Integrability 在在物理解决许多天体问题起一个中央作用。杰克多项式的明确的构造是在解决 CalogeroSutherland 模型的必要成分,它是一个一个维的 integrable 系统。从杰克多项式的一个特殊的类开始联系了到钩幼仔图,我们与一套互相变换的操作符有关仔细在力量和基础在转变系数的明确的构造发现一个系统的方法,它是,即保存费用。
Integrability plays a central role in solving many body problems in physics. The explicit construction of the Jack polynomials is an essential ingredient in solving the Calogero-Sutherland model, which is a one-dimensional integrable system. Starting from a special class of the Jack polynomials associated to the hook Young diagram, we find a systematic way in the explicit construction of the transition coefficients in the power-sum basis, which is closely related to a set of mutually commuting operators, i.e. the conserved charges.