位置:成果数据库 > 期刊 > 期刊详情页
基于贝叶斯网络的轻度认知障碍诊断系统
  • ISSN号:1001-0548
  • 期刊名称:电子科技大学学报
  • 时间:0
  • 页码:336-341
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]辽宁师范大学心理发展与教育研究中心,辽宁大连116029, [2]辽宁师范大学教育学院心理系,辽宁大连116029, [3]大连理工大学神经信息学研究所,辽宁大连116024
  • 相关基金:国家自然科学基金(60971096); 国家社会科学基金重点项目(11AZD089)
  • 相关项目:身心调节改变大脑静息态网络的信息加工模式研究
作者: 孙岩|唐一源|
中文摘要:

提出一种基于依赖性分析和打分函数进行贝叶斯网络结构学习的新方法,并把该方法应用于轻度认知障碍诊断系统中。该算法首先通过对结点变量间的依赖性分析测试和无向图的遍历,获得贝叶斯网络结构中所有结点的先验顺序,然后用启发式打分—搜索方法获得最优的贝叶斯网络结构。实验结果表明,该算法能够在不增加算法复杂度的情况下,完成无结点顺序要求的贝叶斯网络学习,并能应用于轻度认知障碍诊断系统中,实现较好的预测,进而辅助医生的诊断。

英文摘要:

This paper presents a new method in structure learning of Bayesian network based on dependency analysis and scoring function. Through analyzing the dependent relationship between variables and accessing to undirected graph, the prior sequence of all of the nodes in Bayesian network structure is obtained. The optimal structure of the Bayesian network is then generated by heuristic-search method. The new algorithm has been applied to the diagnostic system of mild cognitive impairment. The experimental results show that the new algorithm can better predict the possibility of mild cognitive impairment under the similar complexity, and further assist the diagnosis of doctor.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314