位置:成果数据库 > 期刊 > 期刊详情页
基于改进k-medoids算法的XML文档聚类
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]厦门大学信息科学与技术学院,福建厦门361005
  • 相关基金:国家自然科学基金资助项目(61303004);国家社会科学基金资助重大项目(13&ZD148);福建省自然科学基金资助项目(2013J05099).
中文摘要:

XML文档由于其自身的可扩展性、半结构化和自描述性等特点,已成为数据表示和交换的数据格式标准。一个高效、快速的XML文档聚类机制能够大幅缩短信息检索时间,提高数据查询的效率,挖掘出潜在的信息价值。为此,提出一种改进的k—medoids算法对XML文档进行聚类。运用模糊聚类方法确定聚类个数,利用遗传算法的全局最优的搜索能力求解最佳聚类中心点或质心,从而提高大规模XML文档集的聚类质量。实验结果表明,与基于传统k—medoids算法的聚类方法相比,改进的聚类方法具有较高的聚类准确性和收敛度。

英文摘要:

Due to extensibility, semi-structured and ability of self-description and other characteristics, eXtensible Markup Language(XML) has been the standard of data representation and exchange. An efficient, fast XML clustering mechanism, will greatly shorten the information retrieval time, improve the efficiency of data query and find out the potential information value. In order to improve the clustering quality of massive XML document collections, a novel XML document clustering method is proposed based on the study of structure and the similarity in the XML documents, according to the improved k-medoids clustering algortihm. The analyses of experimental results show that the proposed method has satisfactory clustering convergence and accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139