位置:成果数据库 > 期刊 > 期刊详情页
基于网络结构Logistic模型的企业信用风险预警
  • ISSN号:1002-4565
  • 期刊名称:《统计研究》
  • 时间:0
  • 分类:C812[社会学—统计学]
  • 作者机构:[1]厦门大学经济学院, [2]厦门大学数据挖掘研究中心, [3]美国耶鲁大学生物统计系
  • 相关基金:国家自然科学基金面上项目“广义线性模型的组变量选择及其在信用评分中的应用”(71471152); 国家社会科学基金重大项目“大数据与统计学理论的发展研究”(13&ZD148);国家社会科学基金青年项目“大数据的高维变量选择方法及其应用研究”(13CTJ001)的资助
中文摘要:

随着计算机和互联网的快速发展,特别是在大数据时代,企业积累了大量有关企业经营、财务等相关数据,变量众多且关系纷繁复杂,如果利用传统的logistic回归建立企业信用风险预警模型往往效果不好。本文在充分考虑变量间的网络结构(Network)关系基础上,提出了网络结构Logistic模型,通过惩罚方法同时实现变量选择和参数估计。蒙特卡洛模拟表明网络结构Logistic模型要优于其他方法。最后,我们将其应用到我国企业信用风险预警中,充分考虑财务指标间的网络结构关系,科学地选择评估指标,构建更加适合我国国情的企业信用风险预警方法。

英文摘要:

With the rapid development of computer and the Internet,especially in the era of big data,some enterprises has accumulated a lot about their operation and finance data. Since the data is numerous and complicated,if we use the traditional logistic regression to build up the enterprise credit risk,the performance usually isn't good. In this paper,we propose network-logistic model based on considering the network relationship among variables,via penalized method to conduct variable selection and parameters estimation simultaneously. Simulation results show that network-logistic model performs better than other compared methods. Finally,we apply it to forecast enterprise's credit risk,under considering the network relationship between financial indicators,select significant variables and build up a suitable credit risk forecasting model for Chinese enterprises.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《统计研究》
  • 北大核心期刊(2011版)
  • 主管单位:国家统计局
  • 主办单位:中国统计学会
  • 主编:万东华
  • 地址:北京西城区月坛南街75号
  • 邮编:100826
  • 邮箱:tjyj@gj.stats.cn
  • 电话:010-68783985
  • 国际标准刊号:ISSN:1002-4565
  • 国内统一刊号:ISSN:11-1302/C
  • 邮发代号:82-14
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国人文社科核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国社科基金资助期刊,中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:32248