在真空管道HTS磁浮实验系统中,利用高温超导体为列车提供悬浮力,闭合圆环形长初级直线感应电机进行驱动,列车加速性能取决于直线电机产生的最大推力.本文结合真空管道的特性,建立了复合次级直线电机模型,利用分层理论模型分析了复合次级参数对电机启动推力及法向力的影响,并通过有限元仿真分析验证直线电机驱动特性与复合次级参数之间的关系.结果表明,采用1.3 mm厚的次级铝板和1 m~2 mm厚的背铁组成的复合次级,列车可以获得较高的启动推力,在运行过程中获得较大加速度,并有效削弱了法向吸力,提高了列车运行时的稳定性,最后通过实验测试,验证了仿真研究的正确性,为高速真空管道HTS磁悬浮列车应用提供设计参考.