位置:成果数据库 > 期刊 > 期刊详情页
Improvement of Machine Translation Evaluation by Simple Linguistically Motivated Features
  • 期刊名称:Journal of Computer Science and Technology (JCST)
  • 时间:0
  • 页码:57-67
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
  • 相关基金:Regular Paper Supported by the National Natural Science Foundation of China under Grant Nos. 60773066 and 60736014, the National High Technology Development 863 Program of China under Grant No. 2006AA010108, and the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology under Grant No. HIT.NSFIR.20009070.
  • 相关项目:翻译标准自动量化研究
中文摘要:

采用回归 SVM 框架,这份报纸建议语言学激发的特征工程策略与与人的评价的更好的关联开发一个 MT 评估度量标准。与所有可得到的特征的贪婪联合的当前的惯例相对照,六个特征为翻译质量根据人的直觉被建议。然后,语言学特征的贡献经由爬山的策略被检验并且分析。实验显示与彻底的语言学特征上的评价 SVM 模型或以前的尝试相比,有六个语言学信息的回归 SVM 模型基于特征更好概括到对面不同的数据集,并且与合适的非语言学的度量标准扩充这些语言学特征能完成另外的改进。

英文摘要:

Adopting the regression SVM framework, this paper proposes a linguistically motivated feature engineering strategy to develop an MT evaluation metric with a better correlation with human assessments. In contrast to current practices of "greedy" combination of all available features, six features are suggested according to the human intuition for translation quality. Then the contribution of linguistic features is examined and analyzed via a hill-climbing strategy. Experiments indicate that, compared to either the SVM-ranking model or the previous attempts on exhaustive linguistic features, the regression SVM model with six linguistic information based features generalizes across different datasets better, and augmenting these linguistic features with proper non-linguistic metrics can achieve additional improvements.

同期刊论文项目
期刊论文 77 会议论文 94 专利 4 著作 2
期刊论文 7 会议论文 19 专利 1
同项目期刊论文