双语平行句对是机器翻译的重要资源,但是由于获取途径的限制,句子级平行语料库不仅数量有限而且经常集中在特定领域,很难适应真实应用的需求。该文介绍了一个基于Web的双语平行句对自动获取系统。该系统融合了现有系统的优点,对其中的关键技术进行了改进。文中提出了一种自动发现双语网站中URL命名规律的方法,改进了双语平行句对抽取技术。实验结果表明文中所提出的方法大大提高了候选双语网站发现的召回率,所获取双语平行句对的召回率为93%,准确率为96%,证明了该文方法的有效性。此外,该文还对存在于双语对照网页内部的双语平行句对的抽取方法进行了研究,取得了初步成果。
Parallel sentences are valuable resources for machine translation while not readily available in the necessary quantities and often domain limited. This paper constructs a system to automatically obtain parallel sentences of high quality from the Web. This system puts forward a method to find the similarity of URLs in bilingual websites, and also improves parallel sentence extraction technology. Experimental results show that this system gains a recall rate of 93% and a precision rate of 96% when collecting parallel sentences from test set. In addition, this paper makes preliminary research in collecting parallel sentences from bilingual contrast web pages.