利用三角函数系为逼近空间,将在图象压缩、偏微分方程的近似解、统计分类方面有着重要应用的非线性m-项逼近中的误差计算方法——以Λ-Greedy逼近算法应用到Lp空间由Fourier系数及乘子函数确定的多(d)元乘子函数类上,利用乘子函数空间的性质,通过对由Fourier系数确定的乘子函数类由三角函数系给出的m-项逼近的性质的讨论,给出了在Λ—Greedy逼近算法下,一般乘子函数是空间分别在Lp^·与Lp范数下逼近界的表达式.
In this paper, the approximation method by trigonometric polynomials, called non-linear m- term Λ-Greedy approximation which has applications in adaptive PDE solvers, compression of images and signal, statistical classification, and so on, is used in the multiplier function classes determined by Fourier coefficients. By discassion of the properties of the multiplier function classes and that the multiplier function classes defined by the Fourier coefficients, the convergence Bounds of the non-linear best m-term approximation in Λ-Greedy Algorithm given by the trigonometric system with Lp, lp norms are given.