得到了使等式Kn(K2(Pr),MK2(Pr),L2(T))=dn(K2(Pr),L2(T))成立的最小M值,并计算了Kn(K2(Pr),K2(Pr),Lq(T))的渐近阶,其中Kn(·,·,Lq(T))和dn(·,Lq(T)),1≤q≤∞,分别代表Kolmogorov意义下在Lq(T)中的相对宽度和宽度,K2(Pr)表示定义在[-π,π]上由自共轭线性微分算子所确定的光滑函数类.
The smallest number M which make the equality Kn (K2 (Pr), MK2 (Pr), L2 (T))= dn(K2(Pr), L2(T)) hold is obtained, and the asymptotic order ofKn(K2(Pr), K2(Pr), Lq(T)) is studied, where Kn(·,·, Lq(T) ) and dn(·, Lq(T) ), 1 ≤ q ≤∞, denote respectively the relative widths and widths in the sense of Kolmogorov in Lq(T), and K2(Pr) denotes the smooth function classes defined by a self-conjugate linear differential operator.