设λ>0,考虑从lp(z)到L^p(R)(p=1)的算子(L)λ:((L)λy)=∑k∈ZykLλ(x-k),y=(yk)k∈z,x∈R,其中Lλ(x)=∑k∈Zcke-λ(x-k)^2,x∈R,满足插值条件Lλ(j)=δ0j,j∈z,且δ0j是Kronecher常数.在此研究的‖(L)λ‖p(λ→0)渐近行为是基于‖(L)λ‖的积分表达式进行的.得到了一个强渐近估计:‖Lλ‖p=4/π^2log π^2/λ+4/π^2(log 2/λ+r)+2/πA+o(1)(λ→0),其中A是一绝对常数并且γ是欧拉常数.
Suppose λ is a positive number. Consider the Gaussian cardinal interpolation opearator Lλ, defined by the equation (Lλy) =∑k∈ZykLλ(x-k),y=(yk)k∈z,x∈R, as a linear mapping from l^p(Z) into L^p (R) (p= 1), where Lλ (x) = ∑k∈Zcke-λ(x-k)^2,x∈R with Lλ (j) =δoj ,j∈ Z, here δoj is the Kronecher constant. The study of the asymptotic behavior of ‖(L)λ‖p(λ→0) is based on an integral expression of ‖(L)λ‖. It is shown that ‖Lλ‖p=4/π^2log π^2/λ+4/π^2(log 2/λ+r)+2/πA+o(1)λ→0, where A is an absolute constant and γ is Euler constant.