研究具有p-Laplace算子的多点边值问题{(φp(u′(t)))′+λf(t,u(t),u′(t)=0,t∈[0,1],;u′(0)=∑i=1 ^n αiu′(ξi),u(1)=∑i=1 ^n βiu(ξi)正解的存在性,其中φp(s)=|s|^p-2s,p〉1,λ〉0是参数.
We get positive solution of the following multi-point boundary value problem with p-Laplace operator: {(φp(u′(t)))′+λf(t,u(t),u′(t)=0,t∈[0,1],;u′(0)=∑i=1 ^n αiu′(ξi),u(1)=∑i=1 ^n βiu(ξi) where φp(s)=|s|^p-2s,p〉1,λ〉0 is a parameter.