利用范数形式的锥拉伸与压缩不动点定理,研究了一类p-Laplacian方程四点边值问题(Фp(u'(t))'(t)+λf(t,u(t))=0,t∈( 0,1),u(0)-βu'(ξ)=(0),u(ξ)-δu'(η)=u(1)+δu'(1+ξ-η其中Фp(s)=|s|^p-2·s,p〉1获得了其拟对称正解的存在性定理.
We considered the existence of positive pseudo-symmetric solutions for four point boundary value problems of p-Laplacianequations(Фp(u'(t))'(t)+λf(t,u(t))=0,t∈( 0,1),u(0)-βu'(ξ)=(0),u(ξ)-δu'(η)=u(1)+δu'(1+ξ-ηp(s)=|s|^p-2·s,p〉1By using the fixed-point theorem of cone expansion-compression type with norm. Several sufficient conditions are established.