位置:成果数据库 > 期刊 > 期刊详情页
帕金森病患者血清低分子量蛋白质差异表达分析
  • ISSN号:1006-7795
  • 期刊名称:《首都医科大学学报》
  • 时间:0
  • 分类:R741.04[医药卫生—神经病学与精神病学;医药卫生—临床医学]
  • 作者机构:[1]首都医科大学宣武医院老年病研究所神经生物学研究室神经变性病教育部重点实验室,神经变性病教育部重点实验室, [2]首都医科大学神经科学研究所
  • 相关基金:国家高技术研究发展计划(863计划)(2006AA02A408)、国家自然科学基金(30430280,30570646)、北京市自然科学基金(7022011)和北京市属高等学校人才强教计划资助项目
中文摘要:

目的探讨帕金森病(Parkinson’s disease,PD)患者区别于正常人的血清蛋白质差异表达。方法选择原发性PD患者35例和正常人35例,用弱阳离子交换(weak cationic exchange,WCX)磁珠捕获血清蛋白质组分,用MALDI-TOF-MS(matrix assisted laser desorption/ionization time of flight mass spectrometer)检测各样品的蛋白质质谱,统计学筛选差异表达分子,监督神经网络算法建立区分模型,盲法验证。结果在PD组和对照组之间筛查到8个差异分子(非参数检验Z值范围为-4.458~-3.059,P〈0.05)。以监督神经网络算法建立区分模型,其判断正确率为81.4%。对25例新样本的盲法验证结果显示,模型的正确率为76.0%。结论PD患者血清蛋白质的表达谱有别于正常人。蛋白质组学数据结合生物信息学方法可能有助于PD的诊断。

英文摘要:

Objective To study the differential expression of serum low molecular weight proteins in Parkinson' s disease (PD) patients and normal subjects. Methods Serum samples from 35 idiopathic PD patients and 35 normal subjects were selected. Serum proteins were captured by weak cationic exchange(WCX) magnetic beads. Molecular weight of the proteins in beads-binding fraction was detected by MALDI-TOF-MS. Differential expression molecules in PD patients and normal subject were screened by statistics. A classification model was constructed by bioinformatics tools like Supervised Neural Network (SNN) , and was validated by using 25 newly recruited samples. Results A total of 8 discriminating M/Z peaks related to PD were identified ( P 〈 0.05, nonparametric test, Z : -4. 458 - -3. 059). The classification model based on SNN generated a separation between PD and healthy controls. The correct rate was 81.4% for training set, and was 70.0% for 25 newly recruited samples. Conclusion Protein expression in serum of PD patients is different from the normal controls. Serum proteomics data combined with bioinformatics approaches may contribute to the diagnosis of PD.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《首都医科大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教育委员会
  • 主办单位:首都医科大学
  • 主编:王晓民
  • 地址:北京丰台区右安门外西头条10号
  • 邮编:100069
  • 邮箱:sydxb@ccmu.edu.cn
  • 电话:010-83911346 83911348
  • 国际标准刊号:ISSN:1006-7795
  • 国内统一刊号:ISSN:11-3662/R
  • 邮发代号:82-56
  • 获奖情况:
  • 第三届中国高校优秀科技期刊奖,中国科技论文在线...
  • 国内外数据库收录:
  • 美国化学文摘(网络版),中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2014版)
  • 被引量:14086