研究了一类非线性发生率和扩散的两菌株传染病模型,得到其基本再生数和侵入再生数.如果基本再生数R_0〈1,那么无病平衡点是全局渐近稳定的;如果R_1〉1,R_21〈1,β_i(x)=β_i,γ_i(x)=γ_i,i=1,2,菌株1占优的平衡点是局部渐近稳定的;如果R_2〉1,R_12〈1,β_i(x)=β_i,i=1,2,菌株2占优的平衡点是局部渐近稳定的.如果R_1〉1,R_2〉1,R_12〉1,R_12〉1,系统存在一个共存平衡点.
A two strain model with nonlinear incidence and diffusion is investigated. The basic reproduction number and invasion reproduction numbers are obtained. If the basic reproduction number R0 〈 1, then the disease equilibrium is globally asymptotically stable; if R1 〉 1, R21 〈 1 and βi(x) =βi, i = 1, 2, the strain 1 dominated equilibrium is locally asymptotically stable; while if R2 〉 1, R2 1 〈 1 and βi(x) = βi, i = 1,2,, the strain 2 dominated equilibrium is locally asymptotically stable. When R1 〉 1, R2 〉 1, R2 1〉 1, R1 2 〉 1, there exists a coexistence equilibrium by using sub-sup solution method.