位置:成果数据库 > 期刊 > 期刊详情页
距离空间中的神经网络插值与逼近
  • 期刊名称:数学学报,2008,51(1),91-98
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]Department of Computer Science Shaoxing College of Arts and Sciences, Shaoxing Zhejiang 312000, China, [2]China Jiliang University, Hangzhou Zhejiang 310018, China
  • 相关基金:This work was supported by the National Natural Science Foundation of China (No. 60473034).
  • 相关项目:关于神经网络结构复杂性与本质逼近阶研究
中文摘要:

为优化问题的神经网络有的设计类型为更少参数,低寻找空格尺寸和简单结构在另外的网络上有利。在这篇论文,由适当地构造 Lyapunov 精力功能,当被用来优化在一个关上的凸的集合上定义的连续地可辨的凸的功能时,我们证明了这个网络的全球集中。结果解决网络的广泛的适用性。几个数字例子被给验证网络的效率。

英文摘要:

Projection type neural network for optimization problems has advantages over other networks for fewer parameters , low searching space dimension and simple structure. In this paper, by properly constructing a Lyapunov energy function, we have proven the global convergence of this network when being used to optimize a continuously differentiable convex function defined on a closed convex set. The result settles the extensive applicability of the network. Several numerical examples are given to verify the efficiency of the network.

同期刊论文项目
期刊论文 37 会议论文 4 获奖 2
同项目期刊论文