本文研究定义在单纯形上的多元Kantorovich算子逼近的正逆不等式与饱和定理,给出该算子在L^P(1≤P≤∞)空间的最优逼近类,即利用K-泛函的特征刻画分别满足||Kn(f-f)||p=O(n^-1)与||Kn(f-f)||p=o(n^-1)的函数类.
This paper deals with the direct-inverse inequalities and saturation theorems on the multivariate Kantorovich operators Kn f defined on the simplex. The classes of function yielding optimal approximation on L^P(1≤P≤∞) space are given. That is, the author finds the classes of function for which ||Kn(f-f)||p=O(n^-1) and ||Kn(f-f)||p=o(n^-1) in terms of the behavior of certain K-functional.