这篇论文学习差别方程 Δx (n)=的非自治的非线性的系统(n) x (n)+ f ( n , x (n)), n ∈ Z ,(*)在哪儿 x (n)∈ R~N ,(n)=(a_( ij )(n))_( N x N )是一个 N xN 矩阵,与a_( ij )∈ C ( R , R )为 i , j = 1,2,3 ,..., N ,和 f =( f_1 , f_2 ,..., f_N )~ T ∈ C ( R x R~N , R~N ),令人满意的 A ( t +ω)= A (t), f ( t +ω, z )= f ( t , z )为任何 t ∈ R ,( t , z )∈ R x R~N 和 ωi s 一个积极整数。为ω - 的存在的足够的条件方程(*) 的周期的答案被获得。
This paper studies the nonautonomous nonlinear system of difference equations △x(n) A(n)x(n) + f(n,x(n)), n∈Z ,(*) where x(n)∈R^N,A(n) = (aij(n))N×N is an N×N matrix, with aij∈C(R,R) for i,j = 1,2,3 ,N, and f = (f1,f2,... ,fN)^T ∈C(R×R^N,R^N), satisfying A(t+) = A(t), f(t+ω,z) = f(t, z) for any t∈R, (t, z) ∈R× RN and ∈is a positive integer. Sufficient conditions for the existence of ω-periodic solutions to equations (*) are obtained.