位置:成果数据库 > 期刊 > 期刊详情页
基于分治策略的改进人工蜂群算法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,济南250014
  • 相关基金:国家自然科学基金项目(90612003);山东省自然科学基金项目(ZR2013FM008);山东省科技发展计划项目(2011GGH20123).
中文摘要:

人工蜂群(ABC)算法存在着收敛速度不够快、易陷入局部最优的缺陷。针对这一问题,提出一种改进的人工蜂群(DCABC)算法。应用反学习的初始化方法产生初始解,引入分治策略对蜜源进行优化,在采蜜蜂发布更新的蜜源信息后,跟随蜂选择最优蜜源,并采用分治策略进行迭代优化。通过对经典测试函数的反复实验及与其他算法的比较,表明了所提出的算法具有良好的加速收敛效果,提高了全局搜索能力与效率。

英文摘要:

As a kind of swarm optimization algorithm with good performance, the artificial bee colony (ABC) algorithm is presented in recent years. However, it exist some disadvantages, such as the convergence speed is not fast enough, easy to fall into local optimum and etc. In order to solve this problem, an improved algorithm called DCABC is presented. In this algorithm, the opposition-based learning method is employed when producing the initial population, the divide-and-conquer strategy is adopted to greed update food resources. After employed bees releasing updated food source information, onlookers choose optimal resource based on the divide-and-conquer strategy. Experiments are conducted on a set of 6 benchmark functions, and the results show that DCABC has better performance than several other ABC-based algorithms, especially on the accelerating convergence and the global search ability and efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961