位置:成果数据库 > 期刊 > 期刊详情页
基于巴氏系数和Jaccard系数的协同过滤算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,济南250014, [2]山东省分布式计算机软件新技术重点实验室(山东师范大学),济南250014
  • 相关基金:国家自然科学基金资助项目(61572301,90612003); 山东省自然科学基金资助项目(ZR2013FM008)
中文摘要:

针对传统基于邻域的协同过滤推荐算法存在数据稀疏性及相似性度量只能利用用户共同评分的问题,提出一种基于巴氏系数和Jaccard系数的协同过滤算法(CFBJ)。在项目相似性度量中,该算法引入巴氏系数和Jaccard系数,巴氏系数利用用户所有评分信息克服共同评分的限制,Jaccard系数可以增加相似性度量中共同评分项所占的比重。该算法通过提高项目相似度准确率来选取最近邻,优化了对目标用户的偏好预测和个性化推荐。实验结果表明,该算法比平均值-杰卡德差分(MJD)算法、皮尔森系数(PC)算法、杰卡德均方差(JMSD)算法、PIP算法误差更小,分类准确率更高,有效缓解了用户评分数据稀疏所带来的问题,提高了推荐系统的预测准确率。

英文摘要:

The traditional collaborative filtering recommendation algorithm based on neighborhood has problems of data sparsity and similarity measures only utilizing ratings of co-rated items, so a Collaborative Filtering algorithm based on Bhattacharyya coefficient and Jaccard coefficient( CFBJ) was proposed. The similarity was measured by introducing Bhattacharyya coefficient and Jaccard coefficient. Bhattacharyya coefficient could utilize all ratings made by a pair of users to get rid of common rating restrictions. Jaccard coefficient could increase the proportion of common items in similarity measurement. The nearest neighborhood was selected by improving the accuracy of item similarity and the preference prediction and personalized recommendation of the active users were optimized. The experimental results show that the proposed algorithm has smaller error and higher classification accuracy than algorithms of Mean Jaccard Difference( MJD),Pearson Correlation( PC), Jaccard and Mean Squared Different( JMSD) and PIP( Proximity-Impact-Popularity). It effectively alleviates the data sparsity problem and enhances the accuracy of recommendation system.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679