为紧缩的 Riemannian 歧管沉浸进的 M 一更高维歧管它能被选择是一个欧几里德几何学的空格,一个单位范围,或甚至一个射影的空格,我们成功地为p拉普拉斯算符的第一个非零特征值以 M 的吝啬的弯曲向量的标准给几上面的界限( 1 p M 。当 Reillys 的扩展跳了因为第一非零关上了 Laplace 操作符的特征值,这结果能被看见。
For a compact Riemannian manifold M immersed into a higher dimensional manifold which can be chosen to be a Euclidean space, a unit sphere, or even a projective space, we successfully give several upper bounds in terms of the norm of the mean curvature vector of M for the first non-zero eigenvalue of the p-Laplacian (1 〈 p 〈 +∞) on M. This result can be seen as an extension of Reilly's bound for the first non-zero closed eigenvalue of the Laplace operator.