使用四甲基氢氧化铵(TMAH)液相改性聚偏氟乙烯(PVDF),以过氧化苯甲酰(BPO)为引发剂,一步将磺酸基甲基丙烯酸甲酯(SBMA)接枝到改性的PVDF上,制备了聚偏氟乙烯接枝聚磺酸基甲基丙烯酸甲酯(PVDFg-PSBMA)质子交换膜.利用傅里叶变换红外(FTIR)光谱和扫描电镜-X射线能谱(SEM-EDX)分析了膜的结构、形貌及硫元素分布情况.同时研究了不同质量分数的TMAH甲醇溶液对PVDF-g-PSBMA膜电导率和甲醇渗透率的影响.结果表明,TMAH使PVDF脱去HF产生碳碳双键且SBMA成功接枝到改性的PVDF骨架上,硫元素在膜内外分布均匀;PVDF-g-PSBMA膜的电导率和甲醇渗透率随TMAH在甲醇中质量分数的增多而增大,TMAH质量分数为20%的膜的质子电导率在20℃下达到0.0892 S cm–1,常温下的甲醇渗透率为4.04×10^-7cm^2 s^-1;热重分析(TGA)表明,膜的热稳定性良好,耐热温度高达270℃.该膜作为电解质材料的直接甲醇燃料电池(DMFC)的最大功率密度达到17.06·m W cm^-2.
Poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate)(PVDF-g-PSBMA) proton exchange membranes were synthesized via single-step grafting sulfobetaine methacrylate(SBMA) onto PVDF. Benzoyl peroxide(BPO) was the initiator, and the PVDF was initially modified by tetramethylammonium hydroxide(TMAH) in the liquid phase. Microstructure morphologies and sulfur distributions in the membrane were characterized by Fourier transform infrared(FTIR) spectroscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM-EDX), respectively. The PVDF formed C=C double bonds following dehydrofluorination by TMAH. SBMA was grafted onto the modified PVDF backbones, forming a homogeneous sulfur distribution in the interior and exterior of the membrane. Proton conductivities and methanol permeabilities of PVDF-g-PSBMA membranes increased with the increasing of the TMAH mass fraction in methanol. When the mass fraction was 20%, the proton conductivity of the membrane was 0.0892 S·cm–1 at20 ℃, and the methanol permeability was 4.04 ×10^-7cm^2 s^-1 at ambient temperature, respectively. The membrane exhibited good thermal stability up to 270 ℃, as verified by thermogravimetric analysis(TGA). With this membrane, the peak power density of a direct methanol fuel cell(DMFC) was 17.06 mW·cm^-2.