大型旋转机械的状态预示技术是实现设备状态维护的关键,针对大型旋转机械的几种典型趋势,提出支持向量机(support vector machines,SVM)进行系统故障趋势预示的模型,采用BP(back propagation)神经网络模型和SVM模型对不同的趋势进行预测,结果表明SVM模型具有预测精度高的特点.在以上研究的基础上,提出一种新的旋转机械系统状态组合预测模型.该模型采用振动烈度和特征频率分量作为预测机械系统状态的敏感因子,采用从时域到频域、频域到时域,构建旋转机械状态预测的组合模型.将基于SVM的组合预测模型应用于旋转注水机组的状态预测,取得较好的预测效果.