位置:成果数据库 > 期刊 > 期刊详情页
大型旋转机械状态组合预示模型研究
  • ISSN号:1001-9669
  • 期刊名称:《机械强度》
  • 时间:0
  • 分类:TH113.1[机械工程—机械设计及理论] TH165.3[机械工程—机械制造及自动化]
  • 作者机构:[1]北京机械工业学院机械工程系, [2]北京理工大学机械与车辆工程学院
  • 相关基金:国家自然科学基金资助项目(50375017)、北京市自然基金资助项目(3042006)、北京市重点实验室开放项目(030314)、高等学校博士学科点专项科研基金资助项目(2004007029).
中文摘要:

大型旋转机械的状态预示技术是实现设备状态维护的关键,针对大型旋转机械的几种典型趋势,提出支持向量机(support vector machines,SVM)进行系统故障趋势预示的模型,采用BP(back propagation)神经网络模型和SVM模型对不同的趋势进行预测,结果表明SVM模型具有预测精度高的特点.在以上研究的基础上,提出一种新的旋转机械系统状态组合预测模型.该模型采用振动烈度和特征频率分量作为预测机械系统状态的敏感因子,采用从时域到频域、频域到时域,构建旋转机械状态预测的组合模型.将基于SVM的组合预测模型应用于旋转注水机组的状态预测,取得较好的预测效果.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械强度》
  • 中国科技核心期刊
  • 主管单位:中国机械工业联合会
  • 主办单位:中国机械工程学会 郑州机械研究所
  • 主编:王长路
  • 地址:郑州市嵩山南路81号
  • 邮编:450052
  • 邮箱:jxqd@chinajournal.net.cn
  • 电话:0371-67710821
  • 国际标准刊号:ISSN:1001-9669
  • 国内统一刊号:ISSN:41-1134/TH
  • 邮发代号:36-76
  • 获奖情况:
  • 2002年12月获河南省第五届优秀科技期刊二等奖,1999年6月获国家机械工业局机械行业优秀科技期刊...,1999年2月获河南省第三届优秀科技期刊二等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11980