运用三维实体有限元数值模拟方法,对9组Q460等级高强度钢材螺栓抗剪连接试验进行材料、几何、接触非线性分析,详细介绍了建立有限元模型的具体方法,给出了极限承载力的求解全过程,提出了影响其模拟精度的重要因素。根据端距、边距和螺栓间距的不同,采用有限元模型模拟出了连接板发生的孔壁承压破坏、净截面破坏等不同的破坏模式,通过有限元分析得到的极限承载力计算值与试验值十分接近。结果表明:建立的有限元模型能够准确模拟高强度钢材孔壁承压性能,选择合适的应力-应变关系和接触刚度是影响计算精度的关键。
A finite element model with three-dimensional solid elements was established to stimulate the bolted connection in nine groups of Q460 grade high strength steels. Non-linear material, geometrical and contact analysis were carried out to predict the load-displacement curves. The model building procedure and solution programs were introduced in detail. Due to various end distance, edge distance and pitches, different failure modes were observed including end tear-out, bearing resistance and net-section facture. The effectiveness of the performed finite element analysis was verified by the comparison between calculation results and the experiment results. The results show that the finite element model in the paper can simulate bearing resistance of bolted connection in high strength steels. It's found that the appropriate stress- strain relations and contact stiffness are important parameters for accurate prediction.