<正>An appropriate coupled cohesive law for predicting the mixed mode failure is established by combining normal separation and tangential separation of surfaces in the cohesive zone model(CZM) and the cohesive element method.The Xu-Needleman exponential cohesive law with the fully shear failure mechanism is one of the most popular models.Based on the proposed consistently coupled rule/principle,the Xu-Needleman law with the fully shear failure mechanism is proved to be a non-consistently coupled cohesive law by analyzing the surface separation work.It is shown that the Xu-Needleman law is only valid in the mixed mode fracture when the normal separation work equals the tangential separation work.Based on the consistently coupled principle and the modification of the Xu-Needleman law,a consistently coupled cohesive(CCC) law is given.It is shown that the proposed CCC law has already overcome the non-consistency defect of the Xu-Needleman law with great promise in mixed mode analyses.
An appropriate coupled cohesive law for predicting the mixed mode failure is established by combining normal separation and tangential separation of surfaces in the cohesive zone model (CZM) and the cohesive element method. The Xu-Needleman exponential cohesive law with the fully shear failure mechanism is one of the most popular models. Based on the proposed consistently coupled rule/principle, the Xu-Needleman law with the fully shear failure mechanism is proved to be a non-consistently coupled cohesive law by analyzing the surface separation work. It is shown that the Xu-Needleman law is only valid in the mixed mode fracture when the normal separation work equals the tangential separation work. Based on the consistently coupled principle and the modification of the Xu-Needleman law, a consistently coupled cohesive (CCC) law is given. It is shown that the proposed CCC law has already overcome the non-consistency defect of the Xu-Needleman law with great promise in mixed mode analyses.