研究了n维分数次Hardy算子Hαn和其对偶算子Hα*n从加权Hardy型空间到Lebesgue空间上的有界性,得到了Hαn是(CHp0,q,0|y|q0(Rn),Lp(Rn))型算子;Hαn*是(CBp0,q|y|q0(Rn),Lp(Rn))型算子.特别地,当q0=0或p0=p时,这些结果依然成立.
In this paper,we study boundedness of n-dimensional fractional Hardy operators Hαnand its dual operators Hαn* from weighted Hardy type space to Lebesgue space.We get:Hαnis of type,(CHp0,q,0|y|q0(Rn),Lp(Rn));Hαn* is of type,(CBp0,q|y|q0(Rn),Lp(Rn)).Specially,these results also be true when q0 = 0 or p0 =p.