给出了算子T=∑n=1^∞Tn在HB^p和BMOp,B^-上有界的一些充分条件,其中Tn(n∈P)为具有△性质的算子.作为应用,借助于算子值鞅变换得到了关于鞅的矩型极大算子的强(p,p)型不等式和弱(1,1)型不等式,以及其在BMOp,B^-上的有界性.这些结果与经典俨鞅论中极大算子的性质相对应.
In this paper, some sufficient conditions are given for an operator T =∑n=1^∞ T n to be bounded on HB^p and BMOp,B^-, where Tn (n ∈ P) are operators with property △. As applications, with the help of operator-valued martingale transforms, the strong (p,p) type, weak (1, 1) type inequalities and the boundedness on BMOp,B^- for maximal operators of matrix type are obtained. The results are counterparts for maximal operators in classical martingale Hp theory.