通过实例证明了Dekking关于递归集的一个论断:"Lσ的特征值的模有一个小于1,Kn则不收敛."是不正确的.利用Hausdorff度量的性质,给出了一个递归集收敛的充分条件:当Lσ有一个特征值小于1,而S为σ的本性元,则Km不收敛.
The author points out a gap in a claim on Recurrent Sets ‘If Lσ has an eigenvalue with model less than one, then Km doesn't converge. ' Using the properties of Hausdorff metric, the author gives a sufficient condition to the unconvergence of the recurrent sets : when Lσ has an eigenvalue with model 〈 1, and S is primitive of σ, then Km, doesn't converge.