本文研究可分Hilbert空间中的φ混合随机元序列的收敛性.利用截尾法和Borel—Cantelli引理、Kronecker引理等工具,在某种Chung型条件下,得到了弱大数定律和Marcinkiewicz-Zygmund型强大数定律,推广了实值随机变量序列的已知结果.
In this paper, we study the convergence for sequences of φ-mixing random elements in separable Hilbert space. Applying the method of truncation and the tools of Broel-Cantelli lemma and Kronecker lemma, we obtain the weak law of large numbers under some Chung type conditions, and establish the Marcinkiewicz-Zygmund type strong law of large numbers, which extend some known ones for sequences of real-valued random variables.