基于L-p空间是一类可分的Banach空间所具备的特点,定义了L-p空间上的l^p-框架、Banach框架。Hilbert空间的框架具有很多好的性质,根据L-p空间与hilbert空间的一些近似性,推广hilbert空间的框架理论给出了L-p空间上的框架性质,并讨论了Banach框架与p-Riesz基的关系。
L-p spaces are kinds of separable Banach space. Banach frame and l^P-frame in L-p spaces are defined with L-p spaces' characteristics. The nice properties of frames in Hilbert spaces have been discovered. In light of the similarity between L-p spaces and Hilbert spaces, we have explored the properties of l^P-frame and Banach frame in L-p spaces and given a discussion of the relation between Banach frame and P-Riesz basis in this paper.