设Specl(R)是环R所有素左理想构成的集合,α(I)={P∈Specl(R)|IP},β(I)=Specl(R)/α(I),Ul(I)=maxl(R)∩α(I),Vl(I)=maxl(R)∩β(I)和ξ=Ul∑in=1,1≤j1≤j2≤…≤ji≤n(-1)i-1ej1ej2…ejiei∈E(R),i=1,2,…,n,n∈Z+.当R是quasi-normal环时,首先研究了ξ中元素的性质,并借助这些性质证明了如下主要结论:①若R是一个quasi-normal的clean环,则R是左tb-环;②设R是一个quasi-normal环,如果R是一个左tb-环,则ξ形成了maxl(R)的一组基.特别地,maxl(R)是一个紧致的Hausdorff空间.
Let Specl(R) be the set of all prime left ideals of a ring R,and denote α(I)={P∈Specl(R)|IP},β(I)=Specl(R)/α(I),Ul(I)=maxl(R)∩α(I),Vl(I)=maxl(R)∩β(I) and ξ=${Ul(∑ni=1,1≤j1≤j2≤…≤ji≤n$(-1)i-1ej1ej2…eji)|ei∈E(R),i=1,2,…,n,n∈Z+ 2}.When R is a quasi-normal ring,some properties of the elements in ξ are discussed and the following results are obtained: ① If R is a clean ring,then R is a left tb-ring;② If R is a left tb-ring,then ξ forms a base for the weak Zariski topology on maxl(R),particularly,maxl(R) is a compact Hausdorff space.