证明了如下结果:①环R是强左DS环当且仅当R是左DS环和强左极小Abel环;②设R为强左DS环,e^2=e∈R为弱角幂等元,则eRe也是强左DS环;③R是强左极小Abel环当且仅当对每个e∈ME1(R),任意的a,b∈R,eab=eaeb;④强左极小Abel环的次直积也是强左极小Abel环;⑤R是强左DS环当且仅当对R的每个左极小元k,存在e∈ME1(R),使得Rk=l(1-e),l(k)=R(1-e);⑥R是左极小Abel环当且仅当对R的每个左极小元k,当k^2=0时,对每个a∈R,总有Rk+R(ka-1)=R.
It is shown that ① A ring R is strongly left DS if and only if R is a left DS strongly left min-abel ring; ② Let R be a strongly left DS ring and e^2 =e∈R. If e is a weakly corner idempotent of R, then ere is a strongly left DS ring; ③ R is a strongly left min-abel ring if and only if for any e∈ME1(R) and a,b ∈ R, cab= eaeb; ④ The subdirect product of strongly left rain-abel rings is again a strongly left min-abel; ⑤ R is a strongly left DS ring if and only if for every left minimal element k of R, there exists e∈ME1(R) such that Rk=l(1-e),l(k)=R(1-e); ⑥ R is a left min-abel ring if and only if for every left minimal element k of R, if k^2 = 0, then for each a ER, Rk+R(ka-1) =R.