位置:成果数据库 > 期刊 > 期刊详情页
利用NSCT和空间聚类的高光谱图像全局异常检测
  • ISSN号:1001-070X
  • 期刊名称:《国土资源遥感》
  • 时间:0
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]苏州工业园区工业技术学校,苏州215123, [2]长春理工大学,长春130022
  • 相关基金:江苏省教育科学“十二五”规划2015年度课题“基于核心素养的信息技术内容体系重构及教学研究”(编号: B-a/2015/01/012)资助
中文摘要:

在复杂背景干扰下,高光谱图像异常检测虚警率较高。针对这一问题,提出了结合非下采样contourlet变换(nonsubsampled contourlet transform,NSCT)和空间聚类的基于支持向量数据描述(support voctor data description,SVDD)的异常检测算法。首先通过对高光谱数据进行NSCT分解,得到含有绝大部分背景信息的低频图像,与原始图像进行差运算,获取背景残差图像,以此抑制背景信息的干扰; 然后采用空间聚类法对低频图像进行聚类分割,获得各子区域的特征光谱作为SVDD训练样本进行背景建模,克服异常像元与图像随机噪声对SVDD背景建模的影响,同时降低计算量; 最后利用得到的SVDD模型对背景残差图像进行异常检测。实验结果表明,算法抑制了复杂背景的干扰,降低了虚警率,更适用于高光谱图像全局异常检测。

英文摘要:

Due to the interference of complex background information, anomaly detection algorithm has incremental false alarm rate. In order to overcome this problem, this paper proposes an improved SVDD algorithm combining the nonsubsampled contourlet transform (NSCT) with spatial clustering. Hyperspectral imagery is transformed by NSCT, and the low frequency image containing most background information is obtained. The background residual error which is the minus of the hyperspectral imagery and low frequency image can be acquired, whereupon the background information is suppressed. Then, the low frequency image is clustered by spatial clustering method, thereupon the feature spectrum of each sub-region is computed and used as a training sample for SVDD. Hence it can eliminate the influence induced by the anomalous spectrum or random noise, and the calculated amount is also reduced at the same time. Finally, the SVDD model is used to detect background residual error data. The results show that the proposed method can inhibit the interference of complex background. It has lower false alarm rate, and hence it is more appropriate for global anomaly detection in hyperspectral imagery.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《国土资源遥感》
  • 北大核心期刊(2011版)
  • 主管单位:国土资源部
  • 主办单位:中国国土资源航空物探遥感中心
  • 主编:唐文周
  • 地址:北京海淀区学院路31号航空物探遥感中心
  • 邮编:100083
  • 邮箱:gtzyyg@163.com
  • 电话:010-62060291 62060292
  • 国际标准刊号:ISSN:1001-070X
  • 国内统一刊号:ISSN:11-2514/P
  • 邮发代号:82-344
  • 获奖情况:
  • 中国科技核心期刊,《CAJ-CD》执行优秀奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:9707