位置:成果数据库 > 期刊 > 期刊详情页
葡萄浆果糖度可见/近红外光谱检测的研究
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:O433.4[机械工程—光学工程;理学—光学;理学—物理]
  • 作者机构:[1]浙江大学生物工程与食品科学学院,浙江杭州310029, [2]内蒙古农业大学机电工程学院,内蒙古呼和浩特010018, [3]浙江大学动物科学学院,浙江杭州310029
  • 相关基金:国家科技支撑项目(2006BAD10A04,2006BAD10A09),国家自然科学基金项目(30671213)和宁波市重大科技攻关项目(2007C10034)资助
中文摘要:

针对可见/近红外光谱与水果糖度存在非线性相关的特点,利用漫反射光谱测定方法获取了葡萄浆果的可见/近红外光谱,提出了应用偏最小二乘(PLS)结合人工神经网络(ANN)建立葡萄浆果糖度的预测模型,利用偏最小二乘法(PLS)对原始光谱数据进行处理,得出交叉检验的最佳主因子数为3,并将3个主因子的得分作为三层BP神经网络的输入。通过定标集样本对BP神经网络进行训练,用优化的BP神经网络模型对预测集样本进行预测。PLS-ANN模型对样本的预测模型检验参数r^2为0.908,RMSEP为0.112,Bias为0.013,好于只使用PLS模型的预测模型检验参数r^2为0.863,RMSEP为0.171,Bias为0.024。结果表明,利用近红外光谱技术无损检测葡萄浆果糖度等内部品质是可行的,为今后进一步分析建立浆果内部品质预测模型奠定了基础。

英文摘要:

Aiming at the nonlinear correlation characteristic of Vis/NIR spectra and the corresponding sugar content of grape and berries, the Vis/NIR spectra of grape and berries were obtained by diffusion reflectance. A mixed algorithm was presented to predict sugar content of grape and berries. The original spectral data were processed using partial least squares (PLS), and three best principal factors were selected based on the reliabilities. The scores of these 3 principal factors would be taken as the input of the three-layer back-propagation artificial neural network (BP-ANN). Trained with the samples in calibration collection, the BP-ANN predicted the samples in prediction collection. The values of decision coefficient (r^2), the root mean squared error of prediction (RMSEP), and bias were used to estimate the mixed model. The observed results using PLS-ANN (r^2=0.908, RMSEP=0.112 and Bias=0.013) were better than those obtained by PLS (r^2=0.863, RMSEP=0.171, Bias=0.024). The result indicted that the detection of internal quality of grape and berries such as sugar content by nondestructive determination method was very feasible and laid a solid foundation for setting up the sugar content forecasting model for grape and berries.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642