针对一类非线性时滞系统,基于线性的输出反馈控制器,研究了该类系统的镇定控制问题。该系统的不确定部分满足下三角结构的增长条件,且受到时滞参数的影响,通过引入可调增益,构造了线性输出反馈控制器。通过选择适当形式的Lyapunov-Krasovskii泛函,最终证明可以找到使得闭环系统达到全局渐近稳定的可调增益的范围。该结论也可推广到满足非三角结构的非线性时滞系统系统。由于所构造的观测器及在其基础上构造的控制器满足线性与无记忆的特性,因此在实践中易于实现。最后通过2个仿真示例验证了所提方法的有效性。
The stabilization problem via the linear output feedback controller is addressed for a class of nonlinear systems subject to time-delay.The uncertainty of the system satisfies the lower-triangular growth condition and it is affected by time-delay. A linear output feedback controller with a tunable scaling gain is constructed.By selecting an appropriate Lyapunov-Krasovskii functional the scaling gain can be adjusted to render the closed-loop system globally asymptotically stable.The results can also be extended to the non-triangular nonlinear time-delay systems. The proposed control law together with the observer is linear and memoryless in nature and therefore it is easy to implement in practice. Two computer simulations are conducted to illustrate the effectiveness of the proposed theoretical results.