位置:成果数据库 > 期刊 > 期刊详情页
基于邻接矩阵的自适应图像分割算法研究
  • ISSN号:1007-7820
  • 期刊名称:《电子科技》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:上海理工大学光电信息与计算机工程学院,上海200093
  • 相关基金:国家自然科学基金资助项目(61202376);上海市教育基金会晨光计划基金资助项目(10CG49)
中文摘要:

基于聚类的图像分割算法是其中常见的一种,传统聚类算法需人为确定初始聚类中心和类别数,针对如何确定最优聚类类别数的问题,基于邻接矩阵提出一种自适应图像分割算法,该算法克服了传统聚类算法人为确定初始聚类中心和聚类类别数而导致局部最优的缺陷。利用实验数据将算法和传统聚类算法比较,并应用于图像分割。实验结果显示,算法稳定性较好,能自适应的得到准确地聚类类别数,且鲁棒性较强,在应用于图像分割时的聚类结果相对与传统聚类算法更加准确。

英文摘要:

The image segmentation algorithm based on clustering is a common one. Traditional clustering algorithm requires the determination of the initial cluster centers and cluster number of categories, and how to determine the optimal cluster number of categories is a major challenge. An adaptive image segmentation algorithm based on the adjacency matrix is proposed to overcome the local optimization caused by artificial determination of the initial cluster centers and cluster number of categories by traditional clustering algorithms. The proposed algorithm is compared with the traditional algorithm by experiment and applied to segmentation. Experimental results demonstrate good robustness and stability of the algorithm with more accurate result of clustering for segmentation than those by the tradi- tional algorithm.

同期刊论文项目
期刊论文 64 会议论文 3
同项目期刊论文
期刊信息
  • 《电子科技》
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号375信箱
  • 邮编:710071
  • 邮箱:dzkj@mail.xidian.edu.cn
  • 电话:029-88202440
  • 国际标准刊号:ISSN:1007-7820
  • 国内统一刊号:ISSN:61-1291/TN
  • 邮发代号:52-246
  • 获奖情况:
  • 2007年省优秀期刊新闻出版总署首批出版规范A类期刊,工业和信息化部优秀编辑期刊,陕西省优秀期刊,2009-2010年度工业和信息化部期刊编辑质量优秀奖
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库
  • 被引量:7989