位置:成果数据库 > 期刊 > 期刊详情页
电力电子电路多源特征层融合故障诊断方法
  • 期刊名称:电机与控制学报,2010,14(4)
  • 时间:0
  • 分类:TP206[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京农业大学工学院,江苏南京210031, [2]南京航空航天大学自动化学院,江苏南京210016
  • 相关基金:国家自然科学基金(60871009);航空科学基金(2009ZD52045);江苏省研究生科研创新计划项目(CX10B-098Z)
  • 相关项目:芯片级自修复数字系统体系结构与自愈机制研究
中文摘要:

在基于支持向量数据描述(suppoflvectordomaindescription,SVDD)的模拟电路故障诊断中,故障样本易陷入多个球体的交叉区域产生误诊。为了改进标准SVDD松弛的球体描述边界以提高故障诊断性能,提出一种基于图谱空间映射SVDD(graphspectrummappingSVDD,GSM—SVDD)的模拟电路故障诊断新方法。采用高斯核函数构造Laplace矩阵,然后进行特征值分解,由特征值对应的Laplace特征向量描述SVDD球体的边界,最后采用SVDD的最小相对距离法则诊断故障样本。实验结果表明,通过Laplace谱映射改变原始特征样本的空间分布,GSM—SVDD方法能有效提高模拟电路的故障诊断性能。

英文摘要:

For analog circuits fault diagnosis based on support vector domain description ( SVDD ), as faulty samples usually distribute in the overlap region of several hyperspheres, they are misdiagnosed eas- ily. In order to overcome the slack description boundary of SVDD classifier and improve the diagnosis performance of SVDD, an improved method of GSM _ SVDD is proposed to fault diagnosis of analog cir- cuits in this paper. Firstly, the Gauss kernel function was used to construct the Laplace matrix. After im- plementing eigenvalue decomposition, the Laplace eigenvectors were applied to describe the hyperspheres boundary of SVDD classifier. Finally, the fault samples were diagnosed by the smallest relative distance rule of SVDD. The results show that cuits as the space distribution change the new method improves the diagnosis performance for analog cir- of original feature samples by Laplace spectrum mapping.

同期刊论文项目
期刊论文 34 会议论文 1
同项目期刊论文