提出并分析了一类具有饱和发生率的时滞SEIR传染病模型,定义了基本再生数R0。通过分析系统对应的特征方程,得到了无病平衡点P0和地方病平衡点P*的局部渐近稳定性。进一步,通过比较原理和构造李雅普诺夫函数,得出:当R0〈1时,无病平衡点P0是全局渐近稳定的;当R0〉1时,地方病平衡点P*是持久的。
A delayed SEIR epidemic model with saturation incidence rate is proposed and analyzed,and the basic reproductive number R0 is defined. By analyzing the corresponding characteristic equations,the local stability of a disease-free equilibrium P0 and an endemic equilibrium P*are discussed. Further,by the comparison principle and constructing Lyapunov functions,it is found that if R〈0 1,the disease free equilibrium P0 is globally asymptotically stable,and if R〉0 1,the endemic equilibrium P*is permanent.