提出了一类具有非线性发生率和时滞的SIQS传染病模型,定义了基本再生数R0。利用特征根法、函数分析法、微分方程比较原理、迭代原理,对该模型的动力学特性进行分析。证明了当R0﹤1时,无病平衡点P0是全局渐近稳定的;当R0﹥1时,无病平衡点P0不稳定,地方病平衡点P*是全局渐近稳定的。
In this paper,a SIQS epidemic model with nonlinear incidence rate and time delay is proposed and analyzed. We have defined the basic reproductive number R0 . By using eigenvalue,function analysis,comparison principle and iterative methods,the dynamic characteristics of model is analyzed. It is proved that the disease free equilibrium point P0 is globally stable if R0 ﹤1,it is unstable if R0 ﹥1,and the endemic equilibrium point P*is globally stable if R0 ﹥1.